
Defined.ai
Founded Year
2015Stage
Debt | AliveTotal Raised
$81.9MLast Raised
$3.3M | 1 yr agoMosaic Score The Mosaic Score is an algorithm that measures the overall financial health and market potential of private companies.
+15 points in the past 30 days
About Defined.ai
Defined.ai is a company focused on providing AI data solutions within the artificial intelligence and machine learning sectors. It offers a marketplace for training data, including multilingual speech recognition, natural language processing annotations, and medical imaging datasets, for AI solution development. The company serves sectors that require data for machine learning projects, such as technology, healthcare, and finance. It was founded in 2015 and is based in Seattle, Washington.
Loading...
Defined.ai's Products & Differentiators
Data Access Plan
Access high-quality speech data in any locale or language directly from our AI data marketplace, available 24/7 to meet your needs promptly and efficiently. Ideal for businesses seeking scalable solutions to enhance their AI-driven applications.
Loading...
Expert Collections containing Defined.ai
Expert Collections are analyst-curated lists that highlight the companies you need to know in the most important technology spaces.
Defined.ai is included in 4 Expert Collections, including AI 100.
AI 100
100 items
Insurtech
4,489 items
Companies and startups that use technology to improve core and ancillary insurance operations. Companies in this collection are creating new product architectures, improving underwriting models, accelerating claims and creating a better customer experience
Fintech
9,450 items
Companies and startups in this collection provide technology to streamline, improve, and transform financial services, products, and operations for individuals and businesses.
Artificial Intelligence
7,221 items
Defined.ai Patents
Defined.ai has filed 4 patents.

Application Date | Grant Date | Title | Related Topics | Status |
---|---|---|---|---|
11/17/2017 | 9/6/2022 | Crowdsourcing, Computer memory, Networking hardware, Network protocols, Computer networking | Grant |
Application Date | 11/17/2017 |
---|---|
Grant Date | 9/6/2022 |
Title | |
Related Topics | Crowdsourcing, Computer memory, Networking hardware, Network protocols, Computer networking |
Status | Grant |
Latest Defined.ai News
Mar 17, 2025
Expresso Foto Tiago Miranda A empresária portuguesa Daniela Braga, que esteve na conferência HumanX em Las Vegas, aponta para problemas de criatividade na forma como os grandes modelos de Inteligência Artificial estão a ser desenvolvidos e diz que região europeia deve virar-se para modelos open source que possa escrutinar e afinar Jornalista A fundadora e CEO da Defined.ai, empresa que se distingue pela ética dos dados usados para treinar modelos de Inteligência Artificial, foi uma das oradoras convidadas para estar na primeira edição de sempre da HumanX, em Las Vegas. A conferência criada por Stefan Weitz focou-se na criação de sistemas IA transparentes e robustos, com as salvaguardas devidas, que possam escalar mantendo a confiança dos mercados e das pessoas. Falámos com Daniela Braga no hotel Fontainebleau, onde decorreu a conferência, sobre os temas em que foi chamada a participar: um ‘fireside chat’ sobre ética e IA, tema em que se centra a sua missão de conselheira da Casa Branca à União Europeia e World Economic Forum; e uma mesa redonda sobre os limites da criatividade. Por que foi importante estar na primeira edição da HumanX? Nós estamos sempre nestas conferências. Na Inteligência Artificial eu construí uma empresa completamente diferente na área de dados, de fontes de dados fechadas e dados éticos. Não estar aqui seria realmente estranho. Quais são os limites da criatividade em IA no formato atual? Todos os sistemas de Inteligência Artificial estão a ser construídos baseados nos mesmos dados, que são ‘scraped’ [raspados] da web. Os resultados e os comportamentos destes sistemas são basicamente os mesmos. Eu ando a falar em redundância, até nas Nações Unidas, há muito tempo. Toda a gente está a construir sistemas redundantes, baseados nos mesmos dados, que têm preconceitos, que têm violações de copyright, que não são de fontes verificadas e são todos avaliados nos mesmos benchmarks. Basicamente, todos os sistemas, biliões de investimentos, respondem mais ou menos da mesma forma. Ou seja, corremos o risco de, daqui a uns anos, estarmos todos a pensar da mesma forma ou a receber o mesmo tipo de respostas? Por um lado, toda a gente está a usar a mesma metodologia, os mesmos dados não sempre obtidos legalmente, testados da mesma maneira. Portanto, há uma falta de criatividade no desenvolvimento destes sistemas. É a primeira coisa que eu tenho a dizer. A segunda questão é mais filosófica. Por que razão estamos a fazer tantos investimentos deste nível de escala em sistemas que se comportam exatamente da mesma forma? Não seria mais interessante construir modelos mais pequenos, mas mais focados em resolver problemas que realmente diferenciam a Humanidade?
Defined.ai Frequently Asked Questions (FAQ)
When was Defined.ai founded?
Defined.ai was founded in 2015.
Where is Defined.ai's headquarters?
Defined.ai's headquarters is located at 1201 3rd Avenue, Seattle.
What is Defined.ai's latest funding round?
Defined.ai's latest funding round is Debt.
How much did Defined.ai raise?
Defined.ai raised a total of $81.9M.
Who are the investors of Defined.ai?
Investors of Defined.ai include Evolution Equity Partners, Portugal Ventures, Bynd Venture Capital, Kibo Ventures, Semapa Next and 14 more.
Who are Defined.ai's competitors?
Competitors of Defined.ai include Aya Data, Mindtech, Pydantic, Ydata, Argilla and 7 more.
What products does Defined.ai offer?
Defined.ai's products include Data Access Plan and 1 more.
Loading...
Compare Defined.ai to Competitors

Labelbox provides services and software for artificial intelligence (AI) data management and model evaluation within the artificial intelligence and machine learning sectors. The company offers managed labeling services, a platform for building data factories, and a network for hiring experienced AI trainers. Labelbox serves AI teams and organizations seeking to improve their model training and evaluation. It was founded in 2018 and is based in San Francisco, California.

CloudFactory is a company that operates within the artificial intelligence sector, providing data annotation, model monitoring, and oversight services. They offer services to aid in the development and deployment of AI models for various industries. It was founded in 2010 and is based in Reading, England.

24x7Offshoring is involved in artificial intelligence (AI) and machine learning workflows within the technology sector. The company provides services for data collection, data labeling, localization, and outsourced services, with a focus on AI training models. It serves sectors such as science, technology, education, medical research, and public service. It was founded in 2020 and is based in New Delhi, India.

Scale provides data labeling, model training, and curation services for artificial intelligence (AI) applications, along with a generative AI platform that uses enterprise data to improve AI models. Scale serves the technology sector, government agencies, and the automotive industry. Scale was formerly known as Scale Labs. It was founded in 2016 and is based in San Francisco, California.
Aya Data specializes in human-in-the-loop data science solutions within the data science and artificial intelligence (AI) sectors. The company offers services such as data annotation, acquisition, and the development of AI-driven solutions. Aya Data's solutions cater to various sectors including medical, retail, utilities, agriculture, and geospatial industries. It was founded in 2021 and is based in London, United Kingdom.

iMerit provides data annotation solutions for enterprise artificial intelligence (AI). The company offers a data labeling platform known as Ango Hub that includes tools for image, video, text, and audio annotation, as well as sentiment analysis, lidar annotation, content moderation, product categorization, and image segmentation. It primarily serves industries such as autonomous vehicles, medical AI, agriculture, financial services, and technology. It was founded in 2012 and is based in San Jose, California.
Loading...